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Abstract: A first total synthesis of Para-Forssman glycolipid, GalNAcj31-+3GalNAc81+3Galal+ 
4Gal~l+4Glc8l~ leer, is described to provide an unambiguous evidence for the proposed structure 
of the natural product. 

A novel globopentaosyl ceramide 1 was isolated from human red blood cells in 1982 and 

chemically characterized. 1 showed a precipitin reaction with anti-GIoboside I antibody but no 

reaction with anti-Forssman antibody and was named Para-Forssman glycolipid2. We describe 

hem a first total synthesis of 1, which has provided a synthetic evidence for the proposed 

structure 1. 
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Based on a retrosynthetic analysis 

of 1, a glycopentaosyl glycosyl donor 2 

with trimethylbenzoyl auxiliary3 at O- 

2a, and two glycosyl acceptors 34 and 45 

as a ceramide equivalents were designed 

The donor 2 was further disconnected 

into a glycobiosyl glycosyl donor 5 and 

a glycotriosyl glycosyl acceptor 6, 

which were designed as either an 

imidate 7 or a thioglycoside 8, and a 

readily available 93, respectively. 

A practical route to the glycosyl 

donors 7 and 8 was developed as follows. 

Silver triflate and powdered molecular- 

sieves 4A (MS4A) promoted glycosylation 

of alcohol 116 with bromide 106 in 

(CH2C1)2 gave stereoselectively a 94% 

yield of 127, which was converted into 

147 via 137 in 5 steps (1 4:l AcOH-H20 at 80”, 2 Ac20 in Py, 3 MeONa in MeOH, 4 HS(CH2)3SH-Et3N in 

MeOH8, 5 phthalic anhydride-Et3N-Py then Ac20 at 75’. 39% overall). Deallylation of 14 by 

treatment with (Ph3P)3RhCI-DABCO in 7:3:1 EtOH-PhH-H209 and then HgCl2-HgO in 9:l Me2CO-H20 

gave a 51% yield of 157. Removal of ally1 group was achieved more efficiently in the presence of 

3:l PdC12-(Ph3P)3RhCI in 5:l AcOH-H20 and crude 15 was acetylated to give a 70% yield of 177 

along with a 27% yield of 167 as a by-product. In this specific case addition of (Ph3P)3RhCl is 

essential to increase the yield of 17 and in the absence of added (Ph3P)3RhCI a 1:l mixture of 16 

and 17 was obtained in 80% yield. Treatment of hemiacetal 15 with C13CCN-DBU10 in (ClCH2)2 at - 

15” afforded a 2:l mixture of a- and /3-trichloroacctimidates 7 in 68% yield. Another glycosyl 
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donor 8 was also obtained in 93%‘ yield from 17 by treatment1 f with MeSSnBu3 and SK14 in 

(ClCH2)2. 

Crucial couplings between either glycobiosyl donors 7 or 8 and a glycotriosyl acceptor 9 
were next examined. TMSOTf-MS4A promoted12 glycosylation of 9 with 7 in (ClCH2)2 proceeded 

quickly at -20’ to give a 31% yield of the desired product 19 stereoselectively together with a 65% 
recovery of 9. Alternatively, (BuqN)2CuBr4-AgOTf-MS4A promoted13 glycosylation of 9 with 8 in 

CH3NO2 proceeded at 20” to give an 8:l mixture of 19 and 21 in 65% yield, and recovered 9 (31%). 

Use of (ClCH2)2 instead of CH3N02 as a solvent deteriorated this reaction to afford a glycal 1S7 

(72%) as a major product. The inseparable 8:l mixture of 19 and 21 was separated after 
convertion into 20 and 22 in 55 and 7% yield, respectively, from 9 in two steps (1 NH2NH2aH.20 in 

EtOH for 14 h at SO’, 2 Ac20-DMAP in Py). Hydrogenolysis of 20 in the presence of 10% Pd-C in 7:3 

MeOH-H20 followed by acetylation gave an 1:l mixture of 237 a and 8 in 94% yield. Treatment of 

2ij TBDPS NH. TYE A0 
NHCDCIIH,, TMB H 
NHCOC,,H,, H H 

Scheme 3 

23 with NHzNHz*AcOH in 

DMF14 afforded a 99% yield of 

247, which was further 

converted into glycosyl donors 

25 (92%) and 26 (75%, o : 
p=1:5) by treatment with 

CC13CN-DBU in (ClCH2)2 and 

DAST in (ClCH2)215, 

respectively. 

Crucial glycosylation of 3 

with a glycosyl donor 25 was 

performed in the presence of 
TMSOTf-MS4A in (ClCH2)2 but 

the formation of desired 

product 27 could not be 

detected by tic examination. 

Use of a fluoride 26 in the 
presence of SnC12-AgOTf16- 

MS4A in (ClCH2)2, however, 

did afford a 6% yield of 277. 

In order to enhance the 

efficiency of this crucial 

coupling, an another glycosyl 

acceptor 4 was next examined, 
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SnCl2-AgOTf-MS4A promoted glycosylation of 4 with 26 augmented the yield of the coupled 

product 28 to 43%. Slightly higher yield of 50% was attained by using Cp2ZrC12-AgOTf-MS4A as a 

promotor according to Suzuki et al* 7. 28 was converted via 29 into 27 in two steps (1 Ph3P in 

1OOO:l PhH-H201* at 45’. 2 C23II47COOH and 2-chloro-l-methylpyridinium iodide in 1:l Bu3N- 

(ClCH2)219, 98% 0 verall), which was further deprotected to afford the target glycolipid 1 via 307 

in three steps (1 Bu4NF in THF, 2 2:l 0.1M MeONa in MeOH-THF at 20”. 3 2:l 0.25M MeONa in McOH- 

THF at 60”, overall 88%). lH-N.m.r. data for synthetic 1 were in full agrecmcnt with thosc20 for 

the natural glycolipid. 

In conclusion, a stereo-controlled total synthesis of Para-Forssman glycolipid, 

globopentaosyl ceramide 1, was achieved for the first time by employing glycopentaosyl fluoride 

26 as a key glycosyl donor and the proposed structure 1 was eventually confirmed. 
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