A TOTAL SYNTHESIS OF PARA-FORSSMAN GLYCOLIPID ISOLATED FROM HUMAN ERYTHROCYTE MEMBRANE¹⁾

Shigeki Nunomura, Masato Mori, Yukishige Ito, and Tomoya Ogawa*

RIKEN (The Institute of Physical and Chemical Research), Wako-shi, Saitama, 351-01 Japan

Abstract: A first total synthesis of Para-Forssman glycolipid, $GalNAc\beta1 \rightarrow 3GalNAc\beta1 \rightarrow 3Galal \rightarrow 4Gal\beta1 \rightarrow 4Glc\beta1 \rightarrow 1Cer$, is described to provide an unambiguous evidence for the proposed structure of the natural product.

A novel globopentaosyl ceramide 1 was isolated from human red blood cells in 1982 and chemically characterized. 1 showed a precipitin reaction with anti-Globoside I antibody but no reaction with anti-Forssman antibody and was named Para-Forssman glycolipid². We describe here a first total synthesis of 1, which has provided a synthetic evidence for the proposed structure 1.

Scheme 1 (TMB = 2, 4, 6-trimethylbenzoyl, TBDPS = Bu'Ph₂Si)

Based on a retrosynthetic analysis of 1, a glycopentaosyl glycosyl donor 2 with trimethylbenzoyl auxiliary³ at O-2a, and two glycosyl acceptors 3^4 and 4^5 as a ceramide equivalents were designed. The donor 2 was further disconnected into a glycobiosyl glycosyl donor 5 and a glycotriosyl glycosyl acceptor 6, which were designed as either an imidate 7 or a thioglycoside 8, and a readily available 9^3 , respectively.

A practical route to the glycosyl donors 7 and 8 was developed as follows. Silver triflate and powdered molecularsieves 4A (MS4A) promoted glycosylation of alcohol 11⁶ with bromide 10⁶ in $(CH_2Cl)_2$ gave stereoselectively a 94% yield of 12⁷, which was converted into

14⁷ via 13⁷ in 5 steps (1 4:1 AcOH-H₂O at 80°, 2 Ac₂O in Py, 3 MeONa in MeOH, 4 HS(CH₂)₃SH-Et₃N in MeOH⁸, 5 phthalic anhydride-Et₃N-Py then Ac₂O at 75°, 39% overall). Deallylation of 14 by treatment with (Ph₃P)₃RhCl-DABCO in 7:3:1 EtOH-PhH-H₂O⁹ and then HgCl₂-HgO in 9:1 Me₂CO-H₂O gave a 51% yield of 15⁷. Removal of allyl group was achieved more efficiently in the presence of 3:1 PdCl₂-(Ph₃P)₃RhCl in 5:1 AcOH-H₂O and crude 15 was acetylated to give a 70% yield of 17⁷ along with a 27% yield of 16⁷ as a by-product. In this specific case addition of (Ph₃P)₃RhCl is essential to increase the yield of 17 and in the absence of added (Ph₃P)₃RhCl a 1:1 mixture of 16 and 17 was obtained in 80% yield. Treatment of hemiacetal 15 with Cl₃CCN-DBU¹⁰ in (ClCH₂)₂ at -15° afforded a 2:1 mixture of α - and β-trichloroacctimidates 7 in 68% yield. Another glycosyl

donor 8 was also obtained in 93% yield from 17 by treatment¹¹ with MeSSnBu₃ and SnCl₄ in $(ClCH_2)_2$.

Crucial couplings between either glycobiosyl donors 7 or 8 and a glycotriosyl acceptor 9 were next examined. TMSOTf-MS4A promoted¹² glycosylation of 9 with 7 in (ClCH₂)₂ proceeded quickly at -20° to give a 31% yield of the desired product 19 stereoselectively together with a 65% recovery of 9. Alternatively, $(Bu_4N)_2CuBr_4$ -AgOTf-MS4A promoted¹³ glycosylation of 9 with 8 in CH₃NO₂ proceeded at 20° to give an 8:1 mixture of 19 and 21 in 65% yield, and recovered 9 (31%). Use of (ClCH₂)₂ instead of CH₃NO₂ as a solvent deteriorated this reaction to afford a glycal 18⁷ (72%) as a major product. The inseparable 8:1 mixture of 19 and 21 was separated after convertion into 20 and 22 in 55 and 7% yield, respectively, from 9 in two steps (1 NH₂NH₂•H₂O in EtOH for 14 h at 80°, 2 Ac₂O-DMAP in Py). Hydrogenolysis of 20 in the presence of 10% Pd-C in 7:3 MeOH-H₂O followed by acetylation gave an 1:1 mixture of 23⁷ α and β in 94% yield. Treatment of

23 with NH₂NH₂·AcOH in DMF¹⁴ afforded a 99% yield of 24⁷, which was further converted into glycosyl donors 25 (92%) and 26 (75%, α : β =1:5) by treatment with CCl₃CN-DBU in (ClCH₂)₂ and DAST in (ClCH₂)₂¹⁵,

respectively.

Crucial glycosylation of 3 with a glycosyl donor 25 was performed in the presence of TMSOTf-MS4A in (ClCH₂)₂ but the formation of desired product 27 could not be detected by tlc examination. Use of a fluoride 26 in the presence of $SnCl_2$ -AgOTf¹⁶-MS4A in (ClCH₂)₂, however, did afford a 6% yield of 27⁷. In order to enhance the efficiency of this crucial coupling, an another glycosyl acceptor 4 was next examined. SnCl₂-AgOTf-MS4A promoted glycosylation of 4 with 26 augmented the yield of the coupled product 28 to 43%. Slightly higher yield of 50% was attained by using Cp₂ZrCl₂-AgOTf-MS4A as a promotor according to Suzuki et al¹⁷. 28 was converted via 29 into 27 in two steps (1 Ph₃P in 1000:1 PhH-H₂O¹⁸ at 45°, 2 C₂₃H₄₇COOH and 2-chloro-1-methylpyridinium iodide in 1:1 Bu₃N-(C1CH₂)₂¹⁹, 98% overall), which was further deprotected to afford the target glycolipid 1 via 30⁷ in three steps (1 Bu₄NF in THF, 2 2:1 0.1*M* MeONa in MeOH-THF at 20°, 3 2:1 0.25*M* MeONa in MeOH-THF at 60°, overall 88%). ¹H-N.m.r. data for synthetic 1 were in full agreement with those²⁰ for the natural glycolipid.

In conclusion, a stereo-controlled total synthesis of Para-Forssman glycolipid, globopentaosyl ceramide 1, was achieved for the first time by employing glycopentaosyl fluoride 26 as a key glycosyl donor and the proposed structure 1 was eventually confirmed.

Acknowledgments. We are grateful to Dr. Susumu Ando for kindly sending us the 500 MHz ¹Hn.m.r. data of natural 1 taken in 49:1 (CD₃)₂SO-D₂O at 60°. We thank Dr. J. Uzawa, Mrs. T. Chijimatsu, and Mr. K. Fujikura for recording and measuring the NMR spectra and Ms. M. Yoshida and her staff for the elemental analyses. We also thank Ms. A. Takahashi and Ms. K. Moriwaki for their technical assistance.

Reference and Notes

- Part 67 in the series "Synthetic Studies on Cell-Surface Glycans". For part 66, see F. Yamazaki, T. Kitajima, T. Nukada, Y. Ito, and T. Ogawa, submitted for publication.
- S. Ando, K. Kon, Y. Nagai, and T. Yamakawa, New Vistas in Glycolipid Res., Ed. A. Makita, S. Handa, T. Taketomi, and Y. Nagai, Plenum Press, New York, 71 (1982).
- S. Nunomura and T. Ogawa, Tetrahedron Lett., 29 5861 (1988); S. Sato, S. Nunomura, T. Nakano, Y. Ito, and T. Ogawa, Tetrahedron Lett., 29 4097 (1988).
- 4) M. Numata, M. Sugimoto, S. Shibayama, and T. Ogawa, Carbohdr. Res., 174 73 (1988).
- M. Mori, Y. Ito, and T. Ogawa, Carbohydr. Res., in press; see also P. Zimmermann, R. Bommer, T. Bar, and R. R. Schmidt, J. Carbohydr. Chem., 7 435 (1988); K. C. Nicolaou, T. Caulfield, H. Kataoka, and T. Kumazawa, J. Am. Chem. Soc., 110 7910 (1988).
- 6) S. Sabesan and R. U. Lemieux, Can. J. Chem., 62 644 (1984).
- 7) Physical data for new compounds are compatible with the assigned structures and are given below. Values of [α]_D and δ_{H,C} were measured for the solution in CHCl₃ and CDCl₃, respectively, at 25°± 3° unless noted otherwise. 1: [α]_D -8.0° (c 0.1 py); δ_H (49:1 (CD₃)₂SO-D₂O, 60°) 5.544 (td, 6.7 and 15.3 Hz, 5cer), 5.363 (dd, 6.4 and 15.3 Hz, 4cer), 4.820 (d, 3.6 Hz, 1c), 4.560 (d, 8.6 Hz, 1d), 4.483 (d, 8.3 Hz, 1e), 4.267 (d, 7.7 Hz, 1b), 4.163 (d, 7.9 Hz, 1a), 1.834 and 1.844 (2s, 2NAc), and 0.884 (t, 6.7 Hz, 2Me); 7(α): [α]_D +49.0° (c 1.4); δ_H 8.464 (s, NH), 6.293 (d, 3.6 Hz, 1a); 7(β): [α]_D +30.40° (c 1.3); δ_H 8.490 (s, NH), 6.260 (d, 8.8 Hz, 1a); 8: [α]_D +24.4° (c 1.2); δ_H 5.339 (d, 8.2 Hz, 1b), 5.029 (d, 10.4 Hz, 1a), 2.182, 2.180, 2.082, 2.077, 2.067, and 1.723 (6s, Ac x 5 and SMe); δ_C 98.0 (1b), 80.8 (1a); 12: [α]_D -1.7° (c 1.2); δ_H 5.536 (s, CHPh), 5.512 (d, 8.6 Hz, 1b), 4.255 (d, 7.8 Hz, 1a); δ_C 101.2 (1a), 100.8 (CHPh), 100.4 (1b); 13: [α]_D +9.0° (c 1.1); 5.454 (d, 2.2 Hz, 4b), 5.447 (d, 8.3 Hz, 1b), 5.319 (d, 2.2 Hz, 4a), 4.213 (d, 7.3 Hz, 1a); 14: [α]_D +17.8° (c 1.4); δ_H 5.508 (d, 2.4 Hz, 4b), 5.354 (d, 3.1 Hz, 4a), 5.347 (d, 8.5 Hz, 1b), 5.015 (d, 8.5 Hz, 1a), 4.796 (dd, 3.4 and 11.2 Hz, 3a);

15: $[\alpha]_D$ +34.8° (c 0.8); **16**: $[\alpha]_D$ -5.0° (c 1.0); δ_H 5.355 (d, 8.3 Hz, 1b), 4.972 (d, 8.5 Hz, 1a), 4.110 and 4.041 (2d, 17.4 Hz, OCH₂CO), 2.188, 2.178, 2.076, 2.072, 1.908, and 1.726 (6s, 6Ac); 17: [α]_D +27.7° (c 1.6); δ_H 6.148 (d, 8.8 Hz, 1a), 5.360 (d, 8.2 Hz, 1b), 2.193, 2.178, 2.078, 2.071, 1.875, and 1.722 (6s, 6Ac); δ_{C} 98.0 (1b) and 90.4 (1a); 18: [α]_D +1.7° (c 1.0); δ_{H} 6.556 (s, 0.9 Hz, 1a), 5.321 (d, 8.3 Hz, 1b), 2.191, 2.163, 2.101, 2.074, and 1.718 (5s, 5Ac). A mixture of 19 and 21: 8H 5.530 (dd, 3.4 and 11.3 Hz, 3e of 19) and 5.660 (dd, 3.4 and 11.3 Hz, 3e of 21); 20: $[\alpha]_D$ +12.5° (c 0.6); δ_H 5.406 (dd, 7.9 and 9.5 Hz, 2a), 5.318 (d, 2.8 Hz, 4e), 5.223 (d, 2.7 Hz, 4d), 5.212 (dd, 3.3 and 11.3 Hz, 3e), 4.954 (d, 3.3 Hz, 1c), 2.270 (s, PhMe), 2.082 (s, 2PhMe), 2.136, 2.033, 2.033, 1.975, 1.889, 1.880 and 1.553 (7s, 7Ac); $\delta_{\rm C}$ 102.9(¹J_{CH} 163 Hz, 1b), 100.7 (¹J_{CH} 160 Hz, 1d), 100.2 (¹J_{CH} 163 Hz, 1e), 99.9 (¹J_{CH} 160 Hz, 1a) and 99.7 (¹J_{CH} 168 Hz, 1c); 22: [a]D +39.3° (c 0.4); $\delta_{\rm H}$ 5.380 (dd, 7.8 and 9.5 Hz, 2a), 2.244 (s, PhMe), 2.089 (s, 2PhMe), 2.079, 2.036, 2.029, 2.001, 1.925, 1.817 and 1.608 (7s, 7Ac); $\delta_{\rm C}$ 103.4 (${}^{1}J_{\rm CH}$ 160 Hz, ib), 99.8 (¹J_{CH} 160 Hz, ia), 98.5 (¹J_{CH} 160 Hz, ic), 97.1 (¹J_{CH} 168 Hz, ic), and 92.6 (¹J_{CH} 170 Hz, 1d); 23 α and β ; δ_{H} 6.471 (d, 3.7 Hz, 1a α) and 5.704 (d, 8.2 Hz, 1a β); 24: [α]_D +65.8° (c 0.7); **25**: $[\alpha]_D$ +54.6° (c 0.8); δ_H 8.750 (s, C=NH), 6.836 (s, 2PhH), and 6.698 (d, 3.4 Hz, 1a); **26**: α : β =1:5, δ_H 6.869 (s, 2PhH), 5.893 (dd, 2.4 and 53.4 Hz, 1aα), 5.489 (dd, 5.2 and 52.5 Hz, 1aβ), 5.016 (d, 8.0 Hz, 1cβ), 4.989 (d, 8.3 Hz, 1cα); 27: [α]D +36.6° (c 0.2); δH 6.820 (s, 2PhH), 5.012 (d, 8.2 Hz, 1d), 4.946 (d, 3.9 Hz, 1c), 4.790 (d, 8.3 Hz, 1e), 1.009 (s, tBu), and 0.880 (t, 6.7 Hz, 2Me); 28: $[\alpha]_D$ +32.3° (c 0.6); δ_H 6.831 (s, 2PhH), 5.601 (d, 3.1 Hz, 4c), 5.396 (d, 2.9 Hz, 4d), 5.307 (d, 3.1 Hz, 4e), 4.995 (d, 8.2 Hz, 1d), 4.934 (d, 3.6 Hz, 1c), 4.771 (d, 8.0 Hz, 1c), 4.764 (dd, 1.8 and 11.0 Hz, 2c), 1.051 (s, tBu), and 0.881 (t, 6.7 Hz, Mc); 30: $[\alpha]_D$ +14.2° (c 0.1); δ_H (49:1 (CD₃)₂SO-D₂O, 60°) 6.854 (s, 2PhH), 5.518 (td, 7.1 and 15.4 Hz, 5cer), 5.352 (dd, 6.7 and 15.4 Hz, 4cer), 4.849 (dd, 8.6 and 9.0 Hz, 2a), 4.807 (d, 3.6 Hz, 1c), 4.556 (d, 8.5 Hz, 1d), 4.540 (d, 7.9 Hz, 1a), 4.479 (d, 7.6 Hz, 1c), 4.298 (d, 7.6 Hz, 1b), 2.234 (s, 3PhMe), 1.827 (s, 2Ac), and 0.844 (t, 6.7 Hz, 2Me).

- 8) H. Bayley, D. N. Standring, and J. R. Knowles, Tetrahedron Lett., 19 3633 (1978).
- E. J. Corey and R. Sugg, J. Org. Chem., 38 3224 (1973); P. A. Gent and R. Gigg, J. Chem. Soc. Chem. Commun., 277 (1974), R. Gigg and C. D. Warren, J. Chem. Soc. (C), 1903 (1968).
- R. R. Schmidt and J. Michel, Angew. Chem. Int. Ed. Engl., 19 732 (1980); R. R. Schmidt, ibid., 25 212 (1986).
- 11) T. Ogawa and M. Matsui, Carbohydr. Res., 54 C17 (1977).
- H. Vorbruggen and K. Krolikiewicz, Angew. Chem. Int. Ed. Engl., 14 421 (1975); S. Murata, M. Suzuki, and R. Noyori, Tetrahedron Lett., 2527 (1980); T. Ogawa, K. Beppu, and S. Nakabayashi, Carbohydr. Res., 93 C6 (1981).
- 13) S. Sato, M. Mori, Y. Ito, and T. Ogawa, Carbohydr. Res., 155 C6 (1986).
- 14) G. Excoffier, D. Gagnaire and J.-P. Utille, Carbohydr. Res., 39 368 (1975).
- 15) Wm. Rosenbrook, Jr., D. A. Riley, and P. A. Lartey, *Tetrahedron Lett.*, 26 3 (1985); G. H. Posner and S. R. Haines, *ibid.*, 26 5 (1985).
- 16) T. Mukaiyama, Y. Murai, and S. Shoda, Chem. Lett., 431 (1981); T. Mukaiyama, Y. Hashimoto, and S. Shoda, ibid., 935 (1985).
- 17) T. Matsumoto, H. Maeta, K. Suzuki, and G. Tsuchihashi, Tetrahedron Lett., 29 3567 (1988).
- 18) Yu. G. Gololobov, I. N. Zhmurova, and L. F. Kasukhin, Tetrahedron, 37 437 (1981).
- 19) E. Bald, K. Saigo, and T. Mukaiyama, Chem. Lett., 1163 (1975).
- 20) S. Ando, unpublished results.

(Received in Japan 30 June 1989)